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ABSTRACT

The capability of all-sky microwave radiance assimilation in the Gridpoint Statistical Interpolation

(GSI) analysis system has been developed at the National Centers for Environmental Prediction (NCEP).

This development effort required the adaptation of quality control, observation error assignment, bias

correction, and background error covariance to all-sky conditions within the ensemble–variational

(EnVar) framework. The assimilation of cloudy radiances from the Advanced Microwave Sounding

Unit-A (AMSU-A) microwave radiometer for ocean fields of view (FOVs) is the primary emphasis of

this study.

In the original operational hybrid 3D EnVar Global Forecast System (GFS), the clear-sky approach for

radiance data assimilation is applied. Changes to data thinning and quality control have allowed all-sky

satellite radiances to be assimilated in the GSI. Along with the symmetric observation error assignment,

additional situation-dependent observation error inflation is employed for all-sky conditions. Moreover,

in addition to the current radiance bias correction, a new bias correction strategy has been applied to all-

sky radiances. In this work, the static background error variance and the ensemble spread of cloud water

are examined, and the levels of cloud variability from the ensemble forecast in single- and dual-resolution

configurations are discussed. Overall, the all-sky approach provides more realistic simulated brightness

temperatures and cloud water analysis increments, and improves analysis off the west coasts of the

continents by reducing a known bias in stratus. An approximate 10% increase in the use of AMSU-A

channels 1–5 and a 12% increase for channel 15 are also observed. The all-sky AMSU-A radiance as-

similation became operational in the 4D EnVar GFS system upgrade of 12 May 2016.

1. Introduction

Satellite radiance data have been used extensively

since the 1990s in major numerical weather prediction

(NWP) centers across the world. The importance of in-

cluding radiance data with fields of view (FOVs) affected
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by clouds and precipitation in a data assimilation system

is obvious, as these data are usually associated with me-

teorologically important areas. However, because of the

limitations of the forecast model physics and radiative

transfer model, as well as the strong nonlinearity of the

observation operator under such conditions, radiances

from cloud-free FOVs have primarily been used to date.

Over the last decade, major efforts have been focused on

the assimilation of cloudy radiance data with increasing

success. These efforts have been coincident with the im-

provements seen in the forecastmodels, in particular with

respect to the model physical parameterization schemes,

and with the advances in radiative transfer models in

modeling the radiative fluxes of cloudy regions. In the

early studies, cloudy radiance data were usually pre-

processed through a one-dimensional variational data

assimilation (1DVAR) scheme to retrieve atmospheric

properties before these radiances were assimilated into a

data assimilation system. For example, in the assimilation

of cloud- and precipitation-affected Special Sensor

Microwave Imager (SSM/I) radiance observations, the

European Centre for Medium-RangeWeather Forecasts

(ECMWF) derived total column water vapor (TCWV)

from the 1DVAR humidity retrieval profiles and as-

similated these TCWV results into the 4DVAR opera-

tional system (Bauer et al. 2006a,b). For cloud-affected

infrared radiances, retrieved cloud-top pressure and

effective cloud fraction were (and still are) used to

constrain the radiative transfer calculation in the as-

similation system (Pavelin et al. 2008). Since March

2009, all-sky microwave radiance data for SSM/I and the

Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) have been assimilated

directly into the operational 4DVAR data assimilation

system at ECMWF (Bauer et al. 2010; Geer et al. 2010).

In the all-sky upgrade of 2010, the so-called symmetric

observation error method was proposed by Geer and

Bauer (2011b). This method was created to increase ob-

servation errors as a function of hydrometeor amount,

following the observed behavior of first-guess departures,

and to avoid sampling errors due to the use of only the first

guess or only the observed hydrometeor amount. The

direct assimilation of overcast scenes from infrared radi-

ances has been included in the ECMWF’s operational

system since September 2009, where cloud-top pressure is

used as a sink variable (McNally 2009). Studies related to

the assimilation of overcast cloudy infrared radiances

were also performed at Météo-France (Guidard et al.

2011) and JapanMeteorologicalAgency (JMA;Okamoto

2013). While there is no cloud control variable in the all-

sky radiance assimilation at ECMWF, studies examining

all-sky radiance assimilation had been conducted with

total relative humidity as a control variable at the Met

Office, but later it was replaced by a new humidity control

variable with a nonlinear transform (Ingleby et al. 2013) in

their clear-sky operational data assimilation system.

Satellite radiance data has been one of the major data

sources for the Global Forecast System (GFS) at the

National Centers for Environmental Prediction (NCEP).

TheGFS forecast system includes theGFS forecastmodel

and the Gridpoint Statistical Interpolation (GSI) analysis

system. Infrared and microwave radiances have been as-

similated successfully in the original operational GFS

forecast system since 1998 (Derber and Wu 1998) using a

clear-sky approach.Aswith the clear-sky approaches used

by other NWP centers, NCEP’s clear-sky approach does

not take into account the cloud first-guess information in

the calculation of simulated radiance. In addition, theGSI

analysis system (Derber et al. 1991; Parrish and Derber

1992; Wu et al. 2002; Purser et al. 2003a; Purser et al.

2003b; Kleist et al. 2009) not only utilizes radiance data

with cloud-free FOVs, but the microwave radiances af-

fected by optically thin clouds have also been used with a

cloud-related bias correction term.Moreover, cloudwater

had been used as a control variable in the original oper-

ational analysis system.

With the improvements to the Community Radiative

Transfer Model (CRTM; Liu and Weng 2006; Bauer

et al. 2006c; Ding et al. 2011; Groff et al. 2013, 2014) and

the forecast model, the work on all-sky microwave ra-

diance assimilation in the GSI analysis system has pro-

gressed at NCEP over the past several years as it has on

the 3D EnVar (Wang et al. 2013; Kleist and Ide 2015a)

and 4D EnVar (Wang and Lei 2014; Kleist and Ide

2015b) GSI analysis systems. To incorporate the all-sky

radiances, relaxations in the criteria for data thinning and

quality control of radiance data have been made. Also,

cloud information is taking into account in radiative trans-

fer calculations, and brightness temperature Jacobians with

respect to hydrometeors are used in projecting the radiance

data information as hydrometeors are introduced into the

GSI as state variables. To successfully assimilate all-sky

microwave radiances, a more appropriate assignment of

observation errors is necessary. The symmetric observation

error method proposed by Geer and Bauer (2011b) and

Geer et al. (2012) is adopted. The existing situation-

dependent observation error inflation for clear-sky condi-

tions is augmented by an inflation developed for all-sky

conditions to handle the radiances with large departures

from the first guess to ensure the information contained in

these radiances could be used without degrading the per-

formance of the system. A new bias correction strategy for

all-sky radiances (Zhu et al. 2014b) is also applied with the

current radiance bias correction scheme (Zhu et al. 2014a).

This new strategy for all-sky assimilation employs only

radiances with consistent cloud as determined by cloud
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liquidwater to generate the updates to the bias coefficients.

A new static cloudwater background error variance is used

and the cloud variability in the dual-resolution configura-

tion of the GFS for the cloud ensemble spread (more dis-

cussion in section 4a) is examined.

This study focuses on Advanced Microwave Sounding

Unit-A (AMSU-A), which is an instrument that has a

relatively large impact on analysis and forecast skill

(Baker and Langland 2007; Zhu and Gelaro 2008; Gelaro

and Zhu 2009; etc.). The AMSU-A microwave radiom-

eter includes 12 sounding channels in the 57-GHz oxy-

gen band and three window channels at 24, 31, and

89GHz. The atmospheric optical properties for the

corresponding window channel frequencies are sensitive

to variability in water vapor, cloud, and precipitation. A

previous study pertaining to the all-sky assimilation of

AMSU-A channels 4 and 5 at ECMWF (Geer et al.

2012) was promising, but only a few additional scenes

could be added in channel 5 compared to their clear-sky

approach, where channels 1–4 and 15 are not used, and

in the end, they found the benefit was not sufficient

to justify an operational implementation. AMSU-A

channels 1–13 and 15 were assimilated in the original

clear-sky operational GFS, and we have been striving

to include all-sky AMSU-A radiances in the GFS system.

Since the first guesses of the snow and precipitation

profiles are not currently available (along with the con-

vective clouds) from theGFS forecast model output, only

AMSU-A radiances affected by nonprecipitating clouds

over ocean surfaces are assimilated in this study, in ad-

dition toAMSU-A radiances from cloud-free FOVs over

all surfaces. Despite the challenges of modeling cloud

forecasts accurately and cloud variability issues (due

to the stochastic physics forcing and the GFS dual-

resolution configuration discussed in section 4a), it will

be seen that the all-sky radiance assimilation performs

reasonably well.

This work has been included in the operational GFS

system in the upgrade of 12 May 2016. The configura-

tion of all-sky microwave radiance assimilation for this

implementation is described in this paper. As we can

see, this work is only the first step in assimilating all-sky

radiances, and there is still much room for improve-

ment as development continues. This paper is orga-

nized as follows. The clear-sky approach in the original

operational GSI analysis system is described briefly in

section 2. The GSI developments to support all-sky

capabilities, including quality control, observation er-

ror, radiance bias correction, and background error

covariance, are discussed in section 3. The benefits of

all-sky radiance assimilation relative to the clear-sky

approach are highlighted in terms of analysis in-

crements in section 4, and its impact on the analysis and

forecast skills is presented in section 5. The conclusions

and future work are summarized in section 6.

2. The clear-sky approach in the original
operational GSI analysis system

For the clear-sky radiance assimilation approach

(Derber andWu 1998) applied in the NCEP’s original

operational GFS system, preference is given to clear-sky

observations in the data-thinning procedure. In this pro-

cedure, radiances are scored based on a series of criteria

such as the underlying surface properties, the distance be-

tween the observation location and the center of the anal-

ysis grid box, and the cloud liquid water (CLW) amount.

The retrieval formula ofGrody et al. (2001) andWeng et al.

(2003) is employed in the CLW calculation (in kgm22) for

AMSU-A observations with ocean surface FOVs:

CLW5 cosufc
0
1 c

1
ln[2852T

b
(1)]

1 c
2
ln[2852T

b
(2)]g , (1)

where c0 (in kgm22) is calculated as

c
0
5 8:2402 (2:6222 1:846 cosu) cosu , (2)

c1 5 0:754 kg (m2 K)21, c2 522:265 kg (m2 K)21, u is the

zenith angle, and Tb(1) and Tb(2) are the brightness

temperatures for AMSU-A channels 1 and 2, respectively.

The sea surface temperature is approximated to be 285K

in the retrieval formula.A radiance observationwith larger

CLW is assigned a higher score, and the radiance with the

lowest overall score in a thinning box is selected.

Additionally, model profiles of the atmospheric state

are assumed to be cloud free. The radiances for cloud-free

FOVs and themicrowave radiances for FOVs that include

optically thin clouds over ocean surfaces are assimilated.

For those FOVs that include optically thin clouds, a dif-

ference term DCLW is calculated as a difference between

CLW from Eq. (1) using the observed and the simulated

brightness temperature, and is employed as a predictor in

the radiance bias correction scheme (Derber and Wu

1998). ThisDCLWbias correction predictor is removed as

we proceed to the all-sky approach.

Moreover, any radiances affected by thick clouds and

precipitation are screened out in theGSI. The thick-cloud

filtering uses the information ofDCLWand the brightness

temperature information for AMSU-A channel 4:

C5

8<
:
(w

1
DCLW)2 1 [w

2
DT

b
(4)]2 over ocean

(w
1
3 0:6)2 1 [w

2
DT

b
(4)]2 others ,

(3)

whereDTb(i) is the difference between the observed and

the simulated brightness temperature (observed minus
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first guess, OmF) for channel i, and the empirical parame-

tersw1 andw2 are set to be (0.3)
21m2kg21 and (1.8)21K21,

respectively. Any radiances corresponding to C . 0.5 are

considered to be affected by thick clouds and are therefore

excluded. The screening of precipitating clouds is based on

the scattering index information as defined by Grody et al.

(1999), and the OmF for AMSU-A channel 6:

P5

(
(w

3
Ds)2 1 [w

4
DT

b
(6)]2 over ocean

0:82 1 [w
4
DT

b
(6)]2 others ,

(4)

where w3 5 0:1K21, w4 5 (0:8)21 K21, and the scattering

index difference Ds (Grody et al. 1999) is given by

Ds5 [2:412 0:0098T
b
(1)]DT

b
(1)

1 0:454DT
b
(2)2DT

b
(15). (5)

Any radiances with P $ 1 are excluded from the GSI.

Additionally, if a radiance observation from channel

4, 5, or 6 is removed, the observations peaking below this

channel (including channels 1, 2, 3, and 15) will not be used.

Meanwhile, the clear-sky situation-dependent obser-

vation error inflation is applied to the channel-by-channel

constant observation error eoclr, and the final observation

error eoclrnew is obtained from

(eoclrnew
)2 5 (eoadj)

2 1 (De
inf
)2 , (6)

where the adjusted error variance (eoadj)
2 5

(zs/2000)[(e
o
clr)

2/t] for AMSU-A channels 1–6 if surface

elevation zs . 2000m, (eoadj)
2 5 (zs/4000)[(e

o
clr)

2/t] for

channel 7 if zs . 4000m, otherwise (eoadj)
2 5 (eoclr)

2/t. The

transmittance at model top is t. The inflation term (Deinf)
2

is computed based on the sensitivities of brightness tem-

perature to the surface emissivity � and skin temperature

Ts; that is, (Deinf)
2 5 (d1j›Tb/›�j1 d2j›Tb/›Tsj)2, where

d1 and d2 are empirical parameters depending on differ-

ent surface types. For the radiances affected by optically

thin clouds from AMSU-A channels 1–5 and 15, an ad-

ditional inflation term 0:2(bDCLW)2 is also included in

Eq. (6), where b is the cloud liquid water bias correction

coefficient.

A radiance observation with an OmF magnitude larger

than a prespecified observation error upper limit or 3

times the observation error eoclrnew , whichever is smaller, is

excluded from the data assimilation system. The pre-

specified observation error upper limits are set to be 4.5K

for AMSU-A channels 1–3 and 13–15, 3.5K for channel

12, 2.5K for channels 4 and 11, and 2.0K for the other

channels.

In the GFS forecast model, cloud water (the sum of the

cloud liquid water and cloud ice) is a prognostic variable.

The model moist physics includes a cloud microphysics

parameterization (Zhao and Carr 1997; Sundqvist et al.

1989; Moorthi et al. 2001) and parameterizations that re-

late to deep and shallow cumulus convection (Han and

Pan 2011), but clouds due to convection are only consid-

ered through detraining the convective cloud water to the

grid-scale cloud water near the convective cloud tops;

thus, the cloud condensate in the convective plume is not

included in the total condensate of the forecast model

output, and the convective cloud is not available for use.

As mentioned earlier, a cloud control variable has also

been explicitly employed in theGSI. Combined with the

tangent linear and adjoint of the model moist physics,

the cloud water control variable was constructed to

assimilate the retrieved precipitation rate product from

the TRMMMicrowave Imager (TMI; Treadon 1997) in

the original operational clear-sky GFS forecast system.

The assimilation of retrieved precipitation rate data

was discontinued in 2013, but the cloud water control

variable remains. Thus, even though retrieved pre-

cipitation rate data are no longer assimilated and ra-

diance data are assimilated in the clear-sky approach,

cloud analysis increments are generated in the 3D

EnVar GSI analysis system via the background error

cross covariances of cloud with the other variables,

such as temperature, moisture, and wind. These non-

zero cross covariances are introduced by the ensemble

part of the hybrid ensemble–variational background

error covariance.

3. The all-sky approach

Over the past few years, efforts have been made at

NCEP to assimilate radiances under all-sky conditions.

To enable the assimilation of radiances for FOVs with

nonprecipitating clouds, elements designed for the

clear-sky approach discussed in section 2, except for the

precipitation screening procedure, have been either re-

moved or turned off; this is, the preference given to

clear-sky radiance data in the thinning, the thick-cloud

filtering, and the bias correction term of cloud liquid

water difference are no longer needed. Therefore, the

radiance data for FOVs coincident with thick clouds,

which are not used in the clear-sky approach, are now

assimilated in the all-sky approach.

As a result of including cloud information in the in-

puts to the CRTM in the satellite-radiance observation

operator, the simulations of satellite radiances and ra-

diance innovation statistics are more realistic in mete-

orologically active weather conditions.

Furthermore, in the all-sky approach, because of the

use of the cloud control variable and the newly added

cloud liquid water and cloud ice state variables in the

GSI, the radiance data information is directly mapped
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onto not only the temperature and moisture fields as in

the clear-sky approach, but also cloud fields via the

brightness temperature Jacobians with respect to cloud

liquidwater and cloud ice. TheCRTMdoes not calculate a

cloud Jacobian for cloud-free layers, but this is overcome

by providing a cloud seed of 1.001 3 1026 kgm22 to the

radiative transfer model as input. The GSI all-sky ap-

proach includes capabilities to apply either individual

hydrometeors or cloudwater as cloud control variable(s).

For the original operational clear-sky GSI, cloud

water is the control variable since it is the cloud prog-

nostic variable in the GFS forecast model. For this

reason, a normalized cloud water (i.e., cloud water

normalized by its background error standard deviation)

control variable has been chosen in current develop-

ment efforts to improve the realism of the cloud field,

including reducing spurious clouds that may be gener-

ated from the background error covariance. More de-

tails are discussed in section 3e. The decomposition of

cloud water (CW) into cloud liquid water and cloud ice

is based on temperature T, with f3CW being cloud ice

and the rest cloud liquid water, where f 5 0.05 3
(273.15 2 T), and f is set to be 0 when f is negative and 1

when f is larger than 1. As our model physics evolves to-

ward the use of individual hydrometeors as prognostic

variables, the current GSI cloud control variable(s) ca-

pabilities will enable extension to individual hydrome-

teors in the future. While cloud analysis increments are

produced through the background error cross covariance

in the clear-sky approach, additional analysis increments

are generated for temperature, moisture, and clouds from

the projection of the cloudy radiance data information

onto the cloud fields in the all-sky approach.

In the following subsections, we describe modifica-

tions to the GSI to implement all-sky capabilities. These

modifications pertain to observation error (symmetric

observation error and situation-dependent observation

error inflation), quality control, bias correction, and

background error covariance.

a. Symmetric observation error formulation

In the GSI clear-sky approach, a constant observation

error eoclr is assigned to each individual satellite in-

strument channel. However, for cloudy radiances as-

similated in the all-sky approach, themagnitude of OmF

is seen to be closely related to cloud amount and the

accuracy of the model first guess. While there is no

reason that the instrument itself would perform differ-

ently for cloudy FOVs, errors in the CRTM simulation

are sensitive to clouds. Therefore, it is more appropriate

to specify the observation error based on the cloud

amount rather than using a constant eoclr. The estimates

of CLW over the ocean from either the observation,

CLWobs, or the first guess, CLWfg, are calculated using

the retrieval Eq. (1).Using the so-called symmetricmethod

proposed inGeer andBauer (2011b) andGeer et al. (2012),

the standard deviation of OmF is computed as a function

of the average of CLWfg and CLWobs (i.e., CLW). This

method prescribes the observation error eo as a function of

CLW in fitting to the OmF standard deviation:

eo 5

8>><
>>:
eoclr (CLW#C

clr
)

eoclr 1 l(CLW2C
clr
) (C

clr
,CLW,C

cld
)

eocld (CLW$C
cld
) ,

(7)

where

l5
eocld 2 eoclr
C

cld
2C

clr

; (8)

Cclr and Ccld are the two cloud threshold values for the

piecewise linear fitting, which are channel dependent; and

eocld is the observation error for radiances associated with

CLW$Ccld. In the fitting process, because of the diffi-

culty in estimating forecastmodel error, the component of

the forecast model error is not removed from the OmF

differences as it should be. Thus, the estimates of the

observation errors are probably too large. Nevertheless,

observation error is often inflated at many NWP centers

to account for spatial and interchannel correlations.

An example is given in Fig. 1 for AMSU-ANOAA-19

channel 2, with theOmF standard deviation (black dots)

for the period from 1 to 15 November 2013 and the as-

signed symmetric observation error (red dots) with

FIG. 1. The OmF standard deviation (STD; K, black dots) for the

period from 1 to 15 Nov 2013 and the assigned symmetric obser-

vation error (K, red dots) of AMSU-A NOAA-19 channel 2 with

respect toCLW(kgm22). The common logarithmof the data count

in each CLW bin is shown with green dots. The CLW bin width

used for the plot is 0.01 kgm22.
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respect to CLW. The common logarithm of data count in

each CLW bin is also shown with green dots. The assigned

symmetric errors follow the slope of the OmF standard

deviations within Cclr ,CLW,Ccld, but with inflated

constant errors for CLW#Cclr and CLW$Ccld. The

values of Cclr, Ccld, e
o
clr, and eocld for the observation error

model [Eq. (7)] are summarized inTable 1 for channels 1–4

and 15 of AMSU-A. In this initial implementation of the

all-sky approach, the cross-scan variation in observation

error considered in Geer et al. (2012) is not yet included.

b. Situation-dependent observation error inflation
for all-sky radiances

A similar strategy to observation error inflation as

presented in Eq. (6) is also used in the all-sky approach,

without the DCLW bias correction term. That is,

(eo*)2 5 (eoadj)
2 1 (Deinf)

2, but with (eoadj)
2 being applied

to the symmetric observation error eo instead of eoclr. The

all-sky approach experiments using the observation er-

ror eo*, however, did not produce satisfactory results,

and excessive analysis increments were generated. An-

other observation error inflation strategy was developed

and is now presented.

In the all-sky approach, many useful cloudy radiance

observations are associated with large OmFs. As such,

the gross error check has been relaxed significantly, only

bad observations or outliers withOmFs larger than 3 times

the final observation error are excluded (section 3c).

However, unlike ECMWF’s system (Andersson and

Jarvinen 1998; Bauer et al. 2010), variational quality

control (VQC) is not applied to radiances in the GSI,

though VQC has been applied to conventional obser-

vations. In this initial implementation of the all-sky

approach, following the legacy route of situation-

dependent observation error inflation in the clear-sky

approach, additional inflation is constructed empirically

using the physically based factors on which it is assumed

the observation error (through primarily the CRTM) is

dependent. That way the radiances with large OmFs can

still be used in the analysis with reduced weights while

not shocking the system. Testing of a new VQC algo-

rithm (Purser 2011) is under way for conventional

observations in the GSI. This algorithm will be tested on

radiances in the future.

The physically based factors considered in this work in-

clude the cloud placement difference between the first

guess and observation, the cloud liquid water difference

between the first guess and observation, a scattering index

equal to or larger than 9 (Grody et al. 1999), and the surface

wind speed ws. Differences in cloud placement are identi-

fied based on the following expressions: (CLWobs 2Cclr)3
(CLWfg 2Cclr), 0 and jCLWobs 2CLWfgj$ 0:005.

Cloud placement differences are commonly located at

the edges of existing clouds, or in some convective lo-

cations as convective clouds are absent in the first guess.

It will be seen in section 4a that we have difficulties in

retaining the cloud water analysis increments in these

locations. Considering the CRTM bias and forecast

model errors, especially the challenge in placing clouds

at the right time and location and with the right phase,

we have used these observations conservatively by em-

pirically introducing an observation error inflation as

De1 5 (1:02 d)jDTbj, where d 5 1.0 if there is no cloud

placement difference between the first guess and the

observation; otherwise, d 5 0.0.

The scattering index s over the ocean is calculated

from observed brightness temperatures for channels

1, 2, and 15 using a retrieval formula from Grody et al.

(1999):

s52113:21 [2:412 0:0049T
b
(1)]T

b
(1)

1 0:454T
b
(2)2T

b
(15). (9)

The scatterplots of OmF versus the difference between

CLWfg and CLWobs, and OmF versus the scattering in-

dex for all ocean surface FOVs, are displayed in the top

and middle panels in Fig. 2 for AMSU-A NOAA-19

channel 1 for a 15-day period from 1 to 15 November

2013. The bottom panel in Fig. 2 shows OmF versus

surface wind speed for only clear-sky FOVs. It is shown

that when the scattering index is greater than 9K the

magnitudes of OmFs tend to increase with the scattering

index. Although almost all radiances with scattering

indices greater than 15K are excluded by the screening

of precipitating clouds (figure not shown), observation

error inflation for scattering indices greater than 9K is

applied. For the top panel in Fig. 2, the standard de-

viation ofOmF does not varymuch with respect to cloud

liquid water difference, but the correspondence between

large OmFs and cloud liquid water difference is appar-

ent for channel 1. Channel 2 has smaller OmF standard

deviation than channel 1, but the OmF bias could be as

large as 630K linearly varying with the cloud liquid

water difference (figure not shown). It is believed that

much of the OmF pattern with respect to the cloud

TABLE 1. A list of the parameter values used in the all-sky ra-

diance observation error assignment for AMSU-A channels 1–4

and 15 in the GFS.

Channel Cclr(kgm
22) Ccld(kgm

22) eoclr(K) eocld(K)

1 0.05 0.60 2.50 20.00

2 0.03 0.45 2.20 18.00

3 0.03 0.40 2.00 12.00

4 0.02 0.45 0.55 3.00

15 0.03 0.20 3.50 15.00

4714 MONTHLY WEATHER REV IEW VOLUME 144

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:11 PM UTC



liquid water difference is the real observation signal we

need for correcting the first guess; therefore, it is not de-

sirable to bias correct these differences. In general, ob-

servation error inflation should only account for the

components of the observation error (mainly the error of

CRTM) in the OmF and the residual bias. The challenge

we are facing here is to distinguish observation error from

forecast error and the real observation signal we need. For

simplicity, the observation error inflations due to the cloud

liquid water difference and large scattering index are em-

pirically designed as De2 5 g1jCLWobs 2CLWfgjeo* and

De3 5g2 max(0:0, s2 9:0)eo*, respectively, with two tun-

able parameters: g1 and g2. To amore limited extent, the

OmF bias is affected by surface wind speed, and

De4 5g3w
2
s e

o* is added as the last inflation term and with

the smallest impact. It is aimed mainly to further re-

duce the weights of the observations with large OmFs

over the northern Pacific Ocean and northern Atlantic

Ocean,where large surfacewind speeds are observed. The

empirical parameters are set to be g1 5 13:0m2 kg21,

g2 5 1:5K21, and g3 5 0:002 s2 m22 in this study based on

the final analysis quality. Moreover, the upper limits of

the error inflations due to cloud liquid water differ-

ence, larger scattering index s, and surface wind speed

are set to be 3:5eo*, 2:5eo*, and 0:5eo*, respectively.

FIG. 3. (top) Symmetric and (bottom) final observation errors

(K) during two analysis cycles for AMSU-A NOAA-19

channel 1.

FIG. 2. Scatterplots of OmF (K) vs (top) the difference between

CLWfg and CLWobs (kgm
22) and (middle) scattering index (K);.

(bottom) OmF (K) of clear-sky locations vs corresponding surface

wind speed (m s21) for AMSU-A NOAA-19 channel 1 for a 15-day

period from 1 to 15 Nov 2013; the color bar shows the common

logarithm of data count.
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Although the inflation term De2 has been examined ex-

tensively with different parameters, as the development

efforts for the forecast model, GSI, and CRTM continue,

it is necessary to revisit and assess the sensitivity of the

assimilation results to these inflation terms (in particular

the two latter added terms De3 and De4) in the future. A

similar form as in Eq. (6) is employed to calculate the final

observation error eonew:

FIG. 4. Comparison of forecast wind vector RMSEs (m s21) at (top) 850, (middle) 500, and (bottom) 200 hPa in

the (left) Northern and (right) Southern Hemispheres for a pair of all-sky experiments [(NO_INFLT (black) and

INFLT (red)] used to examine the impact of the additional observation error inflation De. The observation error

used in NO_INFLT does not include De, but the observation error used in INFLT does.
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(eonew)
2 5 (eo*)2 1 (De)2 , (10)

where De5De1 1De2 1De3 1De4. The effect of total

observation error inflation is clearly reflected in Fig. 3,

with the symmetric observation error in the top panel

and the final observation error in the bottom panel at

two analysis cycles for AMSU-A NOAA-19 channel 1.

The impact of De is assessed using month-long sam-

ples from a pair of all-sky experiments. The experiment

using the final observation error indicates significant

improvement over the experiment using eo* (without the

additional observation error inflation for all-sky condi-

tions), in the forecast anomaly correlation and RMSEs

for temperature and wind, and the analysis and first-

guess fits to rawinsonde temperature and specific hu-

midity observations, with the bias of fits to rawinsonde

specific humidity being reduced by half at 850hPa in the

tropics (figure not shown). Figure 4 shows the forecast

wind vector RMSE results at 850, 500, and 200hPa in the

Northern (left panels) and Southern (right panels)

Hemispheres. Significant reductions in the wind vector

RMSEs are observed throughout the vertical levels due

to the use of De.
The impact of observation error inflation forAMSU-A

data is also examined for a 15-day period from 1 to

15 November 2013, with the histogram of normalized

OmF (normalized by the symmetric observation error)

for AMSU-ANOAA-19 channel 1 (Fig. 5). The radiance

data in Fig. 5 are grouped into four cloud categories

based on the cloud information from the first guess and

observation: where both the observation and first guess

are considered cloud free (O:clear/F:clear, red circles);

both are cloudy (O:cloudy/F:cloudy, black circles); the

observation is cloud-free and the first guess is cloudy

(O:clear/F:cloudy, green circles), or the observation is

cloudy and the first guess is cloud free (O:cloudy/F:clear,

blue circles). If CLWobs #Cclr, then the observation is

considered to be cloud free. Similarly, if CLWfg #Cclr,

then the first guess is considered to be cloud free. The

OmF interval bins are marked by closed circles, where

the mean observation weights are reduced by half or

more by the total situation-dependent observation error

inflation. It is shown that many more positive OmF bins

in the O:cloudy/F:cloudy category are affected by the

observation error inflations. Moreover, for all four cat-

egories the observations at the two ends of the histogram

tails are assigned smaller weights, which resembles the

weight reduction effect of VQC. The resulting OmF

histograms normalized by the final observation error,

however, are more non-Gaussian (Fig. 6), especially for

O:cloudy/F:cloudy and the two categories with different

cloud placements. For both clear-sky and all-sky radi-

ances, the non-Gaussian error structures are currently

under investigation. Since convective clouds are missing

in the first guess, more radiances tend to be coincident

with positive OmF biases than they should be. So an

asymmetric gross error check in the GSI probably may

help to improve the Gaussianity of O:cloudy/F:cloudy

(and O:clear/F:clear), though it may not be desirable to

discard some useful radiances. Also, different empirical

parameter values of g1 may be necessary for positive and

FIG. 5. Histogram of normalizedOmF (normalized by symmetric

observation error) for AMSU-A NOAA-19 channel 1 for the pe-

riod from 1 to 15Nov 2013. The radiance data are grouped into four

cloud categories: black circles forO:cloudy/F:cloudy, red circles for

O:clear/F:clear, green circles for O:clear/F:cloudy, and blue circles

for O:cloudy/F:clear. The closed circles represent the bins where

the averaged ratio of the symmetric observation error to the final

observation error is #0.5.

FIG. 6. As in Fig. 5, but for OmF (normalized by final

observation error).
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negative cloud water differences. However, a funda-

mental question is whether these radiances have intrin-

sically a pure Gaussian distribution, and to what extent a

better defined observation error can improve Gaus-

sianity. It is very likely that many of the radiances with

cloud placement differences between the first guess and

the observation, and some of the radiances with large

cloud liquid water differences would be affected con-

siderably by VQC, if VQC would have been applied.

VQC accounts for the non-Gaussian nature of gross

errors in its formulation, and the effective observation

error in VQC could be considered to be the observation

error divided by the weight reduction factor. In our fu-

ture investigations, we hope to gain a better under-

standing in regard to observation error assignment and

to assess the performance of the above-mentioned new

VQC algorithm on radiances.

c. Quality control

For the all-sky approach, since only FOVs with non-

precipitating clouds are used in this study, the thick-

cloud filtering that is applied in the clear-sky approach

is removed to allow more cloud-affected radiance data

to be used, but the screening of precipitating clouds

remains.

A surface emissivity sensitivity check is also added for

channels 1–3 and 15. The ratio between the OmF and

the first-order variation of brightness temperature with

respect to surface emissivity is applied as a criterion for

quality control. If the ratio is larger than an empirical

threshold, the datum will be excluded. The threshold is

channel dependent, and this check is relaxed when

CLWobs is larger than 0.1 kgm22. Moreover, following

Geer and Bauer (2011a) and Geer et al. (2012), the

cloud effect calculated from channel 5, which is the

difference between the brightness temperature calcu-

lated with the cloud profile and the clear-sky brightness

temperature, is employed to exclude radiance data af-

fected by cloud ice in deep-convection regions.

The gross check is the final test for quality control. A

relaxed gross check is applied to AMSU-A channels 1–5

and 15; that is, a radiance observation with an OmF

magnitude larger than 3 times the final observation error

is excluded from the data assimilation system. The detailed

radiance data usage of AMSU-A (including NOAA-15,

NOAA-18, NOAA-19, MetOp-A, and MetOp-B) for a

typical analysis cycle at 0000 UTC 10 November 2013 is

provided in Tables 2 and 3 for both the clear-sky and all-

sky approaches, in terms of data over water, land, ice–

snow, and mixed surface types, as well as the total. With

the same total of 399879 profiles available for the two

approaches and the thinning grid box of 145km3 145km

for AMSU-A, the profile numbers of radiance observa-

tions that are kept after the thinning process are sum-

marized in Table 2, and the used observation numbers of

channels 1–5 and 15 are presented in Table 3. AMSU-A

TABLE 2. Summary of the radiance observation profile numbers of AMSU-A (including NOAA-15, NOAA-18, NOAA-19,MetOp-A,

and MetOp-B) that are kept after the thinning process, over water, land, ice/snow, and mixed surface types as well as the total kept

radiance numbers, for both the clear-sky (ClrSky) and all-sky (AllSky) approaches at 0000 UTC 10 Nov 2013.

Expt Total Over water Over land Over ice–snow Over mixed

ClrSky 45 505 27 129 6117 8845 3414

AllSky 45 505 27 203 6094 8823 3385

TABLE 3. Summary of used radiance observation numbers for channels (CH) 1–5 and 15 of AMSU-A (includingNOAA-15,NOAA-18,

NOAA-19,MetOp-A, andMetOp-B) over water, land, ice–snow, and mixed surface types, as well as the total used radiance numbers, for

both the clear-sky (ClrSky) and all-sky (AllSky) approaches at 0000 UTC 10 Nov 2013.

Expt Total Over water Over land Over ice–snow Over mixed

ClrSky CH 1 25 986 22 921 1035 1554 476

CH 2 26 208 23 109 1042 1579 478

CH 3 26 205 23 109 1042 1578 476

CH 4 26 208 23 109 1042 1579 478

CH 5 26 208 23 109 1042 1579 478

CH 15 25 588 22 489 1042 1579 478

AllSky CH 1 28 760 25 350 1113 1808 489

CH 2 28 857 25 417 1123 1823 494

CH 3 28 957 25 517 1123 1823 494

CH 4 28 977 25 537 1123 1823 494

CH 5 28 981 25 541 1123 1823 494

CH 15 28 816 25 376 1123 1823 494
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AQUA radiances are not included in the tables, as

AMSU-A’s channels 1–5 and 15 are not used in the GSI.

Overall, about 10% more radiance data for AMSU-A

channels 1–5 and 12%more for channel 15 are assimilated

with the all-sky approach. Our data usage results are dif-

ferent from those of Geer et al. (2012), where only a few

additional scenes could be added in channel 5. It is not very

surprising that we assimilate more radiances from window

and near-window channels as clouds have more impact on

these channels, but we also feel this disparity could be at-

tributed to the differences among the quality control pro-

cedures; that is, the quality control in Geer et al. (2012)

may be much more stringent than that of our GSI all-sky

system. The parameter tuning for the variational quality

control at ECMWF and the situation-dependent observa-

tion error inflation in the GSI would also play a role.

FIG. 7. Histograms of OmF (right) with and (left) without bias correction (BC) for AMSU-A MetOp-A channels

(top) 15 and (bottom) 1 for the period from 1 to 15 Nov 2013.

FIG. 8. Cloudwater ensemble spread (3105 kg kg21) at levels (left) 13 (;850 hPa) and (right) 30 (;300 hPa) at 0000

UTC 22 Oct 2013.
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d. All-sky radiance bias correction

As mentioned earlier, in the all-sky approach the ra-

diance data can be grouped into four categories: O:clear/

F:clear, O:cloud/F:cloud, O:cloud/F:clear, and O:clear/

F:cloud. Intuitively, we would expect the two categories,

where there are inconsistencies in the placement of

clouds between the first guess and observations, to be

associated with the generation–elimination of clouds.

The two categories with mismatched cloud information

contain both bias and real cloud signal information in

these radiances and may affect the performance of an

all-inclusive radiance bias correction, resulting in an

erroneously large bias-corrected OmF. Hence, in addi-

tion to the current radiance bias correction scheme (Zhu

et al. 2014a), a new strategy was proposed in Zhu et al.

(2014b) for the all-sky approach. The intent of this

strategy is to remove the biases from the radiance data,

while preserving the useful cloud information from

the OmFs corresponding to mismatched cloud in-

formation. That is, in an ideal situation, after bias cor-

rection using a proper sample of the AMSU-A radiance

data, we should expect to obtain unbiased OmFs of the

radiance data where the placement of clouds retrieved

from the observations and those from the first guess are

consistent (O:clear/F:clear and O:cloud/F:cloud), while

the O:cloud/F:clear category should exhibit a distinct

positive bias and the O:clear/F:cloud category a distinct

negative bias. In this strategy, all quality-controlled

radiance data are used to produce the analysis, but the

bias correction coefficients are derived using only a

selected data sample where clouds are present–absent

in both the first guess and observations, and the radi-

ance data with mismatched cloud information are bias

corrected using the latest bias coefficients available.
Thus, the observation operator ~h of the AMSU-A ra-

diance data can be written as

~h(x,Db)5

8>>><
>>>:
h(x)1 �

N

k51

b
b,k
p
k
(x) (if with mismatched cloud, over ocean),

h(x)1 �
N

k51

b
b,k
p
k
(x)1 �

N

k51

Db
k
p
k
(x) (otherwise) ,

(11)

where x is themodel state orGSI control vector and h(x)

represents the radiative transfer model. Letting bb,k

denote the latest available estimate of the predictor

coefficient at each outer loop and Dbk the coefficient

increment, the total bias is written as a linear combina-

tion of a set of predictors pk(x), k5 1; 2, . . . , N, and

p1 5 1. In addition, Db is also a GSI control vector and is

updated along with x in theGSIminimization procedure

of the inner loop. With the removal of the DCLW bias

term in the all-sky approach, the current bias predictors

for AMSU-A in the radiance bias correction scheme

include global offset, the lapse rate convolved with the

channel’s weighting function, the square of the lapse

rate convolved with the channel’s weighting function,

emissivity sensitivity, and zenith angle bias correction

terms (Zhu et al. 2014a). We should be aware that,

without introducing a new cloud-related bias predictor

into the radiance bias correction scheme, the two cate-

gories O:clear/F:clear and O:cloud/F:cloud are assumed

implicitly to have the same bias. The histograms of OmF

FIG. 9. Point-wise correlation coefficients between (top) cloud

water and relative humidity background error and (bottom) cloud

water and temperature background error at level 13 (;850 hPa) at

0000 UTC 22 Oct 2013.
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are shown in Fig. 7 for AMSU-A MetOp-A channels 1

(bottom panels) and 15 (top panels), respectively, for a

15-day period from 1 to 15 November 2013. The histo-

grams of OmF before bias correction are shown in the

left panels and the histograms after bias correction are

presented in the right panels. The bias correction strat-

egy works well for channel 15. After bias correction, the

two cloud-consistent categories (O:clear/F:clear and O:

cloud/F:cloud) are centered around a zero bias, and the

other two cloud-mismatched categories are on opposite

sides of the zero-bias line. However, it is observed that

the bias correction is less optimal for channel 1, as the

bias correction settles down somewhere between the

two cloud-consistent categories. This can be explained

by the histograms of OmF before bias correction for O:

clear/F:clear and O:cloud/F:cloud in the left panels in

Fig. 7. While the bias of O:clear/F:clear agrees well with

that of O:cloud/F:cloud for channel 15, the difference

between the bias of O:clear/F:clear and that of O:cloud/

F:cloud is more evident for channel 1. When O:clear/F:

clear and O:cloud/F:cloud have different biases, an ad-

ditional cloud-related bias correction term such as CLW

or an averaged scattering index may further improve the

performance of the bias correction.

e. Background error covariance

With the use of a cloud control variable, it is important

to have a properly constructed background error co-

variance (particularly the cloud water variance and the

cross covariances among cloud water, moisture, and

temperature, as well as wind for this study) in order to

assimilate all-sky radiances appropriately. In the GFS

3D EnVar system, the background error covariance in-

cludes ensemble and static contributions, with an 87.5%

weight given to the ensemble part and 12.5% to the

static term. The ensemble is designed to represent the

probability distribution of the systemuncertainty, including

that of the analysis and background. This is achieved

through a combination of ensemble data assimilation

using the ensemble serial square root filter (Whitaker

and Hamill 2002) and multiplicative inflation by re-

laxation to the prior spread (Whitaker andHamill 2012).

To address model uncertainty, stochastic physics has

been used to improve the ensemble sample’s represen-

tativeness of the probability distributions. The uncer-

tainty is simulated by the inclusion of three stochastic

parameterization schemes (J. Whitaker 2015, personal

communication): the stochastically perturbed parame-

terization tendency scheme (SPPT;Buizza et al. 1999), the

stochastic kinetic energy backscatter scheme (SKEB;

Berner et al. 2009; Shutts 2005), and the stochastically

perturbed boundary layer humidity (SHUM; Tompkins

and Berner 2008). The actual ensemble covariance is

never explicitly computed but, rather, is extracted im-

plicitly through the ensemble control variable formula-

tion. The multivariate increment from the ensemble part

is generated by taking the product of the control variable

weights and the ensemble perturbations at those grid

points. In contrast, the static term is generated by the

National Meteorological Center (NMC, now known as

NCEP) method (Parrish and Derber 1992). The NMC

method estimates the forecast errors using the differences

between 24- and 48-h forecasts but valid at the same time.

Currently, there is no cross covariance between cloud

water and other variables specified in the static term. In

general, the ensemble provides flow-dependent back-

ground error covariance information, and the static term

provides climatological information.

The ensemble cloud water spread (Fig. 8) at levels 13

(about 850hPa, left panel) and 30 (about 300 hPa, right

panel) reflect features of the forecast model; for exam-

ple, the large magnitude of the ensemble spread is seen

to be coincident with a large amount of cloud water in

the first guess. However, the error covariance generated

FIG. 10. Static background error standard deviation of cloud water (3105 kg kg21) at (left) model level 13

(;850 hPa) and (right) cross section that was used in the original operational clear-sky GFS system.
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from the ensemble also inherits the deficiencies of the

forecast model (in particular, the model physical param-

eterization schemes) and the data assimilation system. For

example, because convective clouds are not included in

the cloud output from the GFS forecast model, the mag-

nitude of the cloud water ensemble spread is small over

most of the tropical regions where there are very few

clouds in the first guess relative to the observations (figure

not shown). The amplitudes of the ensemble cloud water

spread are large, comparable to 80% of the cloud water

first guess, with the spread encompassing a much larger

geographic area than the clouds themselves. In terms of

cross covariances, cloud water at level 13 is seen to have

positive point-wise correlation with relative humidity

(Fig. 9, top), and negative correlationwith temperature on

average (Fig. 9, bottom). The resultant analysis increment

will be a function of these point-wise correlations in ad-

dition to the covariances with the nearby grid points (both

horizontal and vertical) within the prescribed localization

radius used in the EnVar solver. While we acknowledge

that the full three- (and four-) dimensional multivariate

covariances are key contributors to the analysis in-

crements within both the clear and all-sky frameworks

given the 87.5%weight to the ensemble, a full exploration

is beyond the scope of this study. However, this is an area

for future work in terms of continuing to improve the

assimilation of all-sky radiances in addition to the more

general enhancements to the prescription of multivariate

correlations within the ensemble.

Regarding the static term, the cloud water back-

ground error variance is changed for the all-sky approach.

Figure 10 shows the square root of cloud water back-

ground error variance at level 13 (about 850hPa, left) and

in a cross section (right) that are used in the original op-

erational clear-sky GFS system. This static error variance

is a constant for each latitude, with moderate variances

observed in the tropics from levels 25 (about 500hPa) to 35

(about 200hPa) and in the extratropics between levels 10

and 30 (about 900–300hPa; Fig. 10, right). A comparison

of Fig. 10 with Fig. 8 indicates that the moderate static

error variance may be dominant at many locations where

the ensemble spread is small. For clouds, which are dis-

continuous, localized, and strongly constrained by tem-

perature and moisture, applying such a static cloud water

background error variance to the all-sky approach would

result in the generation of spurious cloud increments at

many locations that are inconsistent with the model

physics and are not retained by the forecast model in-

tegration. Therefore, in the all-sky approach, to improve

the Gaussianity of the errors and to reduce spurious cloud

increments, normalized cloud water (normalized by its

background error standard deviation) is used as the con-

trol variable, with the new static cloud water background

error variance being assigned to be large onlywhere clouds

already exist. In this study, for simplicity, the static cloud

water background error standard deviation is specified as

5% of the cloud water first guess from the deterministic

forecast, and a small error value 5.0 3 10212 kgkg21 is

assigned for cloud-free locations or locations with cloud

water less than 1.03 10210kgkg21. The ensemble spread

represents the uncertainty in the ensemble forecasts, and

this new static term brings in flow information from the

deterministic forecast. The optimal combination of the

static cloud water error variance and the ensemble spread

of cloud water will be explored in the future.

4. Impact of all-sky approach on analysis
increments

Relative to the clear-sky approach, the impact of the

all-sky approach on analysis increments is expected for

FIG. 11. Cloud water (3105 kg kg21) for (top) first guess; and

analysis increments for the stand-alone single-analysis tests:

(middle) for the clear-sky and (bottom) all-sky approaches for level

10 (;900 hPa) at 0000 UTC 3 Nov 2013.
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the scenarios when the first guess or the radiance ob-

servation is cloudy. A pair of stand-alone single-analysis

tests is examined for an arbitrary analysis cycle (0000UTC

3 November 2013). The two tests use the same first

guess from a cycled clear-sky GFS run. One test uses the

clear-sky approach and the other the all-sky approach.

The bias correction coefficients for each test are gener-

ated from cycled clear-sky and corresponding cycled all-

sky runs, respectively, both of which are spun up from

zero bias at 1800UTC 21October 2013. For the two tests,

Fig. 11 presents the cloud water first guess (top panel)

and the analysis increments (middle panel for the clear-

sky and bottompanel for the all-sky approach) at level 10

(about 900hPa). It is shown that, while the analysis in-

crements of the two approaches are comparable for most

regions, there are notable differences at a few locations

(e.g., the continental western boundaries and the spot

around 1178W near the equator). The GFS forecast is

known to have toomuch cloud at the continental western

boundaries probably because of issues from planetary

boundary layer and moist parameterization schemes as

well as feedback from the analysis. At these locations

where the clear-sky and all-sky approaches differ, the

all-sky approach tends to generate either much smaller

positive cloud water analysis increments than the clear-

sky approach or negative increments. Figure 12 displays

the cloud liquid water at the location near the equator

around 1178W, with the cloud liquid water of the ob-

servations shown in the left panels (top panel for

AMSU-A NOAA-19 and bottom panel for AMSU-A

NOAA-18), and the corresponding column-integrated

cloud liquid water of the first guess in the right panels. It

is seen that for the area to the south of 88N the obser-

vations (both AMSU-A NOAA-18 and NOAA-19) are

FIG. 12. An example of cloud liquid water (kgm22) of (left) observations from AMSU-A (top) NOAA-19 and

(bottom)NOAA-18 at 0000UTC 3Nov 2013 and (right) the corresponding column-integrated cloud liquid water of

the first guess.
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found to be cloud free or with very small amounts of

cloud while the first guess has clouds in this area. For this

case, the cloud-free assumption in the calculation of the

simulated brightness temperature in the clear-sky ap-

proach results in small OmF, but the cloudy first guess

leads to large negativeOmF in the all-sky approach. The

resultant analysis increments at level 10, as shown in

Fig. 13 (left panels for clear sky and right panels for all

sky), exhibit larger reductions in specific humidity (top

panels) and cloud water (lower panels) fields over a

wider area in the all-sky approach than in the clear-sky

approach, which is as expected.

Analysis increments from the cycled clear-sky and all-

sky microwave radiance assimilation runs are also ex-

amined. The all-sky microwave radiance assimilation

approach is tested within a 3D EnVar context using the

same operational observation data from 21 October to

1 December 2013. Like the operational GFS forecast

system, this all-sky experiment (hereafter referred to as

AllSky) uses a dual-resolution configuration but with a

lower resolution, which includes a 670-spectral tri-

angular truncation (T670) horizontal resolution for the

deterministic forecast model and a T254 resolution for

the analysis and ensemble forecast (T670-T254) with 64

unequally spaced sigma layers (L64). The control is the

corresponding clear-sky approach experiment (ClrSky).

For the cycled ClrSky and AllSky runs, the patterns of

the averaged analysis increments at the continental

western coasts at levels 10–15 are more striking than the

analysis increments for the stand-alone tests shown in

Fig. 11. Fig. 14 presents the averaged cloud water first

guess of the ClrSky experiment (top panel) and the av-

eraged analysis increments for ClrSky (middle panel)

and AllSky (bottom panel) at level 13 (about 850hPa).

FIG. 13. Analysis increments at level 10 (;900 hPa), corresponding to Fig. 12, for the (left) clear-sky and

(right) all-sky approaches at 0000 UTC 3 Nov 2013. Shown are the (top) specific humidity analysis increment

(3103 kg kg21) and (bottom) cloud water analysis increment (3105 kg kg21).
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For the clear-sky case, the averaged cloud water in-

crements are uniformly positive, while in the all-sky

case the mean increments show a mixture of positive

and negative values. The cross sections of the zonal

mean cloud water first guess and analysis increments

are also presented in Fig. 15. In the clear-sky run

(Fig. 15, middle), positive cloud water analysis incre-

ments extend from the surface to forecast model level

35 (about 200 hPa), and large positive increments are

generated between model levels 10 (about 900 hPa) to

15 (about 800 hPa) and in the extratropics. In the all-

sky run, the global mean cloud water analysis incre-

ments are smaller, and in some regions, the increments

are negative. There are still some positive cloud water

increments at the lowest vertical levels over ocean in

the all-sky run, which may be questionable, and they

may be attributed to the cloud water ensemble and

ensemble spread at these levels as well as the cross

covariances among cloud water, moisture, tempera-

ture, and wind.

The consistent positive mean increments seen in the

clear-sky case and at some levels in the all-sky case arise

primarily from a combination of the ensemble approach

and the physical restriction that cloud amounts should

be nonnegative. In the clear-sky case increments arise

through cross covarianceswith the other control variables

(as there is no direct observation operator for cloud) with

positive and negative increments equally likely. In rel-

atively clear regions this will result in small positive and

negative cloud amounts in the analyses. However, dur-

ing the minimization negative cloud amounts are set to

zero at each outer loop, resulting in a net positive

analysis departure. For the all-sky case the cloud incre-

ments are also affected directly through the observation

operator and this effect is reduced, although it is still

present at higher levels where the observations provide

FIG. 14. (top) Averaged cloud water (3105 kg kg21) first guess

for the ClrSky experiment; and analysis increments for the (mid-

dle) ClrSky and (bottom) AllSky experiments at level 13

(;850 hPa) during the period from 27 Oct to 1 Dec 2013.

FIG. 15. Cross sections of (top) zonal mean cloud water

(3105 kg kg21) first guess for the ClrSky experiment; and analysis

increments for the (middle)ClrSky and (bottom)AllSky experiments

during the period from 27 Oct to 1 Dec 2013.
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fewer constraints on the solution. Different approaches

to removing negative cloud and reducing these incre-

ments will be explored in future work.

Extraneous small cloud amounts

Over convective locations, since convective clouds are

missing in the cloud water first guess, it may be chal-

lenging in the integration of the deterministic forecast

model to retain the clouds that are generated in the GSI

because of the presence of convective clouds informa-

tion in the radiance observations. Development ef-

forts continue including convective clouds in the cloud

forecast output from the GFS model and in the GSI.

The following discussion focuses on another context of

cloud loss.

It is noticed that the cloud water ensemble spread is

much broader horizontally than the static cloud water

background error variance (figure not shown). Because

of the ensemble part of the background error covariance

(such as the broader cloud water ensemble spread, the

spatial correlations contained within the ensemble mem-

bers, and the cross covariances with other variables), the

subsequent cloud water increments are realized in a

larger area in the all-sky system, relative to the uni-

variate cloud water analysis if only the static term of

the background error covariance would have been

used. Figure 16 depicts the cloud water analysis (left

panel) and first model integration step of the forecast

(right panel) at 850 hPa at 0000 UTC 22 October 2013

from the AllSky experiment. Figure 16 demonstrates

that some small clouds are generated in the analysis

around the edges of the existing clouds, but they may

not be compatible with the physical parameterization

schemes of the deterministic forecast model, and are

dissipated during the integration of the deterministic

forecast model (R. Sun 2014, personal communication).

Further, the generation of these extraneous small clouds

in the analysis does not seem to impact the convergence

of the GSI system.

A close examination shows that this cloud loss also

happens in the clear-sky approach (Fig. 17, top). Con-

sistent with the above cloud water analysis increment

results, the clear-sky approach is shown to generate

more clouds in the analysis (green closed square) than in

the all-sky approach (red closed square) and later fore-

casts (green and red line, respectively for the clear-sky

and all-sky approaches). For both approaches, clouds

are dissipated during the first model integration step and

gradually spin up in later forecast hours. Therefore,

cloud loss is not uniquely associated with the all-sky

approach, and the biggest spindown from analysis at the

first model integration step occurs in the tropics (Fig. 17,

bottom), where convection may be part of the issue.

Although the above-mentioned broader cloud water

ensemble spread may be partially due to the use of the

stochastic physics to help represent model error, the

application of the dual-resolution configuration is an-

other cause. To verify this finding, a pair of single-cycle

tests is conducted using single-resolution T574 and

dual-resolution T574–T254 configurations at an arbi-

trary analysis time (0000 UTC 2 June 2015). Both con-

figurations have 64 vertical levels and use 80 ensemble

members. The first guesses for the analysis and ensem-

ble spreads are examined. In the dual-resolution case,

the low-resolution initial files for the ensemble are ob-

tained by interpolating the high-resolution ensemble

initial files, and the high-resolution model 6-h forecast is

interpolated to the lower resolution and serves as the

first guess for the analysis. The results show that, al-

though the interpolated fields are slightly smoother at

the lower resolution, the interpolation from higher res-

olution to lower resolution does not seem to alter the

overall patterns and features of temperature, relative

humidity, and cloud fields. However, after 6-h integration

FIG. 16. (left) Cloud water analysis and (right) first model integration step of forecast (3105 kg kg21) at 850 hPa at

0000 UTC 22 Oct 2013.
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of the ensemble forecasts, Fig. 18 shows that the differ-

ences between the single-resolution (left panels) and dual-

resolution (right panels) ensembles emerge. Although the

ensemble spread results for temperature (Fig. 18, top)

from the two configurations are comparable, in the

single-resolution simulation the relative humidity en-

semble spread (Fig. 18, middle panels) exhibits more

locally intense values, and the higher relative humidity

spread is slightly more dispersed. The most pronounced

change lies in cloudwater (Fig. 18, bottompanels); that is,

its ensemble spread for the dual-resolution ensemble is

far more spread out than in the single-resolution version,

and this subsequently results in cloud water increments

over a larger area in the analysis. The broader cloud water

ensemble spread realized in the dual-resolution configu-

ration may be attributable to the resolution-dependent

processes in the forecast model, the stochastic physics

algorithm itself, and the resolution-dependent parameter

tuning in the stochastic physics. The stochastic parameters

used had been specifically retuned for the low-resolution

configuration to maintain the ensemble spread magni-

tudes of wind, temperature, and moisture realized at the

higher forecast resolution. However, the three stochastic

parameterization schemes (SPPT, SKEB, and SHUM)

are not directly linked to cloud water variability. The ex-

traneous small clouds that result from the broader en-

semble cloud water spread compensate to some extent for

the lack of clouds in the first guess during the analysis

procedure, and do not seem to cause any particular issue

in the forecast, as they are likely to be lost later in the high-

resolution deterministic model forecast as a result of the

inconsistency with the model physics.

In summary, the all-sky approach produces more re-

alistic cloud water analysis increments; in particular, it

removes some clouds off the continental western coasts.

However, some outstanding issues from the clear-sky

approach still remain for the all-sky approach, including

the accuracy of the model cloud forecast, which is re-

lated to the resolution-dependent physical parameteri-

zation schemes and their impact on the dual-resolution

configuration, the tuning of the stochastic physics for

cloud variability, and the consistency of model uncer-

tainties among temperature, moisture, and cloud vari-

ables in the stochastic physics. Moreover, since the

localization employed in the EnKF may degrade the

multivariable balance in the analysis (Lorenc 2003;

Greybush et al. 2011), more investigations pertaining to

the balance among temperature, moisture, and clouds

are necessary in the future.

5. Impact of all-sky radiance assimilation on
analyses and forecasts

The results discussed below are from the cycled

T670–T254 ClrSky and AllSky experiments for the pe-

riod from 21October to 1December 2013. The first 5 days

of the experiment are excluded from the calculation of

statistics to account for system spinup.

Compared to ClrSky, the all-sky approach reduces the

mean relative humidity analysis (e.g., over the Pacific

Ocean to the west of SouthAmerica) at 850hPa, and the

mean temperature analysis increases correspondingly at

850 hPa but decreases slightly at 700 hPa (figures not

shown). The overestimation of stratus clouds along

continental western coasts has been a persistent prob-

lem in the clear-sky GFS system. The all-sky approach is

seen to reduce relative humidity in these areas, a step in
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FIG. 17. (top) Evolutions of averaged global mean atmospheric

column cloud water (gm22) during forecast issued from ClrSky

(green line) andAllSky (red line) 0000UTC analyses for the period

from27Oct to 1Dec 2013. The green and red closed squares at zero

forecast hour represent the averaged global mean atmospheric

column cloud water of the clear-sky and all-sky analyses, re-

spectively. (bottom) The latitudinal dependence of the spindown

between analysis (black line) and the first model integration step

(green line). Also, shown in the bottom panel is the 6-h forecast

(red line).
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the right direction. A comparison of the mean relative

humidity and temperature at 850hPa against theECMWF

analyses (Figs. 19 and 20) also indicates that the clear-sky

analyses are too wet and too cold at the west of the con-

tinents, whereas the all-sky analyses aremuch closer to the

ECMWF analyses.

Regarding the fits to other observations, as pointed out

in Geer et al. (2012), it is difficult to do a ‘‘clean’’ com-

parison between the clear-sky and all-sky approaches,

since our all-sky approach not only includesmodel cloud

information in the radiative transfer calculation, but also

involves many changes as described in section 3. Nev-

ertheless, the discussion concerning the fits to other

observations is presented. The RMSE differences be-

tween AllSky and ClrSky for the analysis (black line)

and first-guess (red line) fits to the rawinsonde specific

humidity observations are provided in Fig. 21. The re-

sults are comparable in the Northern Hemisphere and

North America for the two approaches, while in the

Southern Hemisphere and tropics slight degradation is

observed at 850hPa but improvement is seen at 925hPa

when all-sky AMSU-A radiances are used. The RMSE

FIG. 18. Ensemble spread at level 13 (;850 hPa) that is valid at T 1 6 h in the (left) single- and (right) dual-

resolution configurations at 0000 UTC 2 Jun 2015 for (top) temperature (K), (middle) relative humidity (%), and

(bottom) cloud water (3105 kg kg21).
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fits to the rawinsonde temperature observations are also

very similar for the two approaches, except that the

RMSE analysis and first-guess fits are reduced slightly at

300 and 400hPa in the Southern Hemisphere in the all-

sky approach (figure not shown). As to the RMSE dif-

ference between AllSky and ClrSky for the first-guess fit

to satellite data for the Microwave Humidity Sounder

(MHS) (Fig. 22, right) degradation is found in AllSky

when verifying against MHSMetOp-B channels 1 and 2,

and to a lesser extent forMHSNOAA-18 andNOAA-19.

However, an approximate 1% increase in the as-

similation of MHS radiances is realized in the all-sky

approach relative to the clear-sky approach (Fig. 22,

left). Comparable ClrSky and AllSky RMSE fit results

are observed for the High Resolution Infrared Radia-

tion Sounders (HIRS) on board NOAA-19. For the

Atmospheric Infrared Sounder (AIRS), the RMSE fits

are mixed for temperature and surface channels but are

reduced slightly by up to 1.3% for water vapor channels

(figure not shown). Overall, compared to the clear-sky

approach, unlike Geer et al. (2012), who found that in-

cluding model cloud increased the total error in the

comparison between the model and observations, the

results of our all-sky AMSU-A radiance assimilation

experiments indicate mostly neutral impacts as they re-

late to the RMSE of OmF. This performance difference

may be partly because more radiances from cloud-

affected FOVs are assimilated in our all-sky study than

in the Geer et al. (2012) study. Another reason may be

that ECMWF’s system possibly has a better-constrained

lower-troposphere water vapor analysis through micro-

wave imager assimilation.

The forecast anomaly correlation and RMSE, which

are verified against self-analyses, are also examined for

many variables, levels, and lead times for the ClrSky and

AllSky experiments. The anomaly correlation results for

geopotential height at 500hPa (Fig. 23) indicate that the

FIG. 19. (top) Averaged relative humidity analysis (%) for

the ECMWF analysis, (middle) the difference between ClrSky and

ECMWF (%), and (bottom) the difference between AllSky and

ECMWF (%) at 850 hPa for the period from 27 Oct to 1 Dec 2013.

FIG. 20. As in Fig. 19, but for temperature (K).

DECEMBER 2016 ZHU ET AL . 4729

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:11 PM UTC



assimilation of all-sky radiance data has a neutral impact

in both the Northern (left panels) and Southern (right

panel) Hemispheres. A similar pattern is also observed

at 700 and 250 hPa. The vector RMSE (RMSVE) for

wind forecasts is also calculated, and slight reductions of

the wind RMSVE are found in both the Northern and

Southern Hemispheres in the AllSky experiment (figure

not shown), but they are not statistically significant at

the 95% confidence level. As the anomaly correlation of

850-hPa temperature is improved significantly in the

tropics and Southern Hemisphere (figure not shown),

the RMSE results of temperature forecasts at 850 hPa

(Fig. 24) indicate that the temperature forecast is de-

graded in the 24-h forecast (with a very small magnitude

around 0.008K) and is neutral at other leading times in

the Northern Hemisphere (top panel) and is significantly

improved beyond 48h in the tropics (middle panel) and

24h in the Southern Hemisphere (bottom panel). The

impact of the all-sky approach on temperature is mostly

neutral elsewhere. It should be noted that these results are

from a roughly month-long trial; rigorous assessments of

the all-sky microwave radiance assimilation for a longer

period should be conducted in the future.

6. Conclusions and future work

Assimilation of all-sky microwave radiance in the GSI

analysis system has been developed at NCEP. Since the

original operational GFS system uses the radiance data

with the clear-sky approach, necessary changes are made

for all-sky conditions in data thinning, quality control,

observation error assignment, bias correction, and cloud

FIG. 21. RMSE differences between AllSky and ClrSky for analysis (black line) and first guess (FG, red line) fits

to rawinsonde specific humidity observations in the Northern and Southern Hemispheres, tropics, and North

America from 27 Oct to 1 Dec 2013.
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background error variance. With the removal of the

preference given to the radiance data of cloud-free FOVs

in the data-thinning process, and the removal of the thick-

cloud filtering in the quality control and cloud liquidwater

difference bias correction term in the radiance bias cor-

rection, nonprecipitating cloudy radiance data over ocean

are now assimilated in the GSI analysis system. Despite

deficiencies in the forecast model and CRTM, the sym-

metric observation error assignment and the additional

situation-dependent observation error inflation for all-sky

conditions are shown to provide reasonable weights for

the all-sky radiance data. Furthermore, the new bias

correction strategy for all-sky radiances, which uses only a

selected data sample to derive the bias correction co-

efficients, is applied on top of the current radiance bias

correction, and it effectively removes the bias for radiance

data where clouds retrieved from the observation and

those from the first guess are consistent, while preserving

the cloud signal in the observation for the radiance data

with mismatched cloud information. Meanwhile, within

the ensemble–variational framework, the background

error covariance is composed of the static term and a part

generated from the ensemble forecasts. In the GSI anal-

ysis system, normalized cloud water is presently used as

the cloud control variable for the all-sky approach, with

the new static cloud water background error variance

being assigned to be large only where clouds already exist.

The issue of cloud loss at the first model integration step,

which is common to both clear-sky and all-sky approaches,

is investigated from the perspective of ensemble

spreads in single- and dual-resolution configurations.

The broader cloud water ensemble spread in the dual-

resolution configurationmay be related to the resolution-

dependent physical processes in the forecast model,

the stochastic physics algorithm that has no direct link

with cloud variability, and the parameter tuning of the

algorithm.

The all-sky microwave radiance assimilation, cur-

rently focused on the AMSU-A instrument, had been

tested extensively in the 3D EnVar GFS system. This

approach utilizes radiance data affected by thick clouds,

which amounts to about a 10% increase in assimilated

radiances from AMSU-A channels 1–5 and 12% from

channel 15. More realistic simulated brightness tem-

peratures are produced by considering cloud infor-

mation in the radiative transfer, and radiance data

information is projected directly onto not only tem-

perature and moisture fields but also cloud fields. Fur-

thermore, the all-sky approach produces much more

realistic cloud water analysis increments; particularly, it

can reduce humidity and cloud water from the analysis

off the west of the continents where the clear-sky GFS

system has produced too much stratus. The all-sky ra-

diance assimilation is an important step moving toward

the full utilization of radiance observations. In terms of

RMSE first-guess fit to observations, while Geer et al.

(2012) found with ECMWF’s system that including

model cloud increases the total error in the comparison

FIG. 22. (left) Used MHS MetOp-B radiance data counts and (right) RMSE difference between the AllSky (red)

and ClrSky (black) experiments for first guess fits to MHS MetOp-B radiances during the period from 27 Oct to

1 Dec 2013.
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between model and observations, our results are mixed.

The RMSE of first-guess fit to rawinsonde specific

humidity observations is slightly degraded at 850 hPa

but improved at 925 hPa in the tropics and Southern

Hemisphere, and the fits to rawinsonde temperature are

improved at 300 and 400 hPa in the Southern Hemi-

sphere. RMSE fits to MHS channels 1 and 2 increase

with more MHS radiances being used, but AIRS water

vapor channels see small decreases in RMSE fits. While

improvements are seen in temperature analyses and

forecasts at 850 hPa in the tropics and Southern Hemi-

sphere, the impact of the all-sky approach on forecast

skills is mostly neutral. The all-sky microwave radiance

assimilation had been included in the May 2016 GFS

pre-implementation package and tested along with

other developmental components in the 4D EnVar GFS

parallel experiment at NCEP. This package was im-

plemented on 12 May 2016 and became the operational

GFS system.

This work is only a starting point for all-sky radiance

assimilation. More studies are necessary on observation

error assignment for all-sky conditions and application

of VQC on radiances. Experiments with an additional

cloud-related bias correction term and sensitivity studies

using different magnitudes of cloud static and ensemble

background error are ongoing. The dependency of ob-

servation error on scan position, as found in Geer et al.

(2012), will also be investigated. Moreover, since the all-

sky GSI has the flexibility of using individual hydro-

meteors as the cloud control variables, the performance

of the GSI all-sky radiance assimilation should be as-

sessed with the individual hydrometeors when they later

become the prognostic variables in the forecast model,

as planned. As further refinements to the all-sky as-

similation continue, the GSI all-sky capabilities are ex-

pected to expand to other microwave instruments.

Experiments to assimilate the Advanced Technology

Microwave Sounder (ATMS) instrument all-sky radi-

ances are under way. Additionally, validation and the

improvement of scattering in the CRTM is essential as

wemove toward the assimilation of precipitating clouds.

Finally, there are outstanding issues related to forecast

model cloud accuracy and cloud variability in the sto-

chastic physics. It is expected that further developments

on these fronts will improve the all-sky radiance assimi-

lation accordingly. Another aspect that still needs more

attention is the choice of the cloud control variable(s).

Although the current cloud control variable works

FIG. 23. (top) Geopotential height anomaly correlation at 500 hPa for the (left) Northern and (right) Southern

Hemispheres during the period from 27 Oct to 1 Dec 2013 for ClrSky (black) and AllSky (red). (bottom) The

differences with respect to ClrSky for the (left) Northern and (right) Southern Hemispheres.
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reasonably well, we believe investigation of better cloud

control variable(s) in the future will be beneficial, espe-

cially when combined with the consideration of balance

among temperature, moisture, and clouds.
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